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-‘ Optima lity Conditions in

Generalized Geometric Programing

by
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Abstract. Generalizations of the Kuhn-Thcker optimality conditions

are given, as are the fundamental theorems having to do with their

necessity and/or sufficiency.
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1.. Introduction. Optimization problems from the real world usually possess

a linear-algebraic component, either directly in the form of problem u n -

earities (e.g.. those involving the node-arc incidence matrices in network

optimization) or indirectly in the more subtle form of certain problem

nonhinearities (e.g., those involving the coefficient matrices in quadratic

programing or, perhaps more appropriately, those involving the exponent

matrices in signomial programing). As demonstrated in the author ’s recent

survey paper tlj and some of the references cited therein, such a compon-

ent can frequently be exploited by taking a (generalized) geometric pro-

~~amming approach . In fact, geometric programing is primarily a body of

techniques and theorems for inducing and exploiting as much linearity

as possible.

The following sections present optimahity conditions that are

tailored to geometric programing and can be viewed as generalizations of

the Kuhn-Tucker optimality conditions. Although the fundamental theorems

having to do with their necessity and/or sufficiency have already been

described in flj, proofs are given here for the first time .

In geometric programming, problems with only linear constraints are

treated in essentially the same way as problems without constraints. Only

problems with nonlinear constraints require additional attention and hence

are classified as constrained problems.

Since many important problems are unconstrained (e.g., most network

optimization problems), and since the theory for the unconstrained case is

much simpler than its counterpart for the constrained case, the unconstrained

case is treated separately (even though its theory is actually embedded in

the theory for the constrained case).

- 

-
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Mathematically , this paper is essentially self-contained .

2. The unconstrained case. Given a nonempty cone Z~~
Er (n-dimensional

Euclidean space), and given a function g with a nonempty domain ~~~~~ the

resulting “geometric programing problem” cl is then defined in the following

way.

PROBLEM c7. Using the “feasible solution” set

ca lcula te  bot h the  “problem infimum”

inf ~i (x)
xE~

)

and the “optimal solution” set

~m x E d I g ~~ ) c~}

Needless to say, the “ordinary programing” case occurs when Z is actually

the entire vector space En
Our optimahity conditions for the preceding problem ~ utilize the

~~~~~~~~ ~~~~~~~

‘
~i~~fyE E 

O-� (x,y) for each xEZJ.

They are stated as part of the following definition.

DEFINITION. A critical solution (stationa ry solution, equilibrium solution,

P solution) for problem ~7 is any vector x* that satisfies the following P

— -•—--- •••— _—•.•-——_-—•—._--—— -— —--— —_— — - —•••—--———————— - -•-.—----———•— - --• -——•——••-•—• — - — - — -— -• • •  - - • •—— •- —•---- •~~~~~____•___• __ _~ ~~~— - ~: ~~~~~~~~~~~~~~~~~



optimality conditions:

x*EZfl~~,

and

O~~(x*, v~~(x*)) .

If the cone Z is actually a vector space , then ~~~~~~~~~~~ and hence the P

optimality condition 0 (x*, Vg (r*)) is redundant and can be deleted .

Furthermore, in the ordinary programing case , th e vector space

so the remaining P optimality condition s become the (more familiar) “or-

dinary optimality conditions” 21
x*EC. and v~~(r*) 0 .

The following theorem gives two convexity conditions that guarantee

the necessity and/or sufficiency of the P optimality conditions.

Theorem 1. Under the hypothesis that g is differentiable at x*,

(i) given that Z is convex, if x~ is an optimal solution to problem

ci, then x* is a critical solution_ for problem ci (but not conversely),

(ii) given that g is convex on C!., jj x* is a critical solution for

problem ci, then x~ is an optimal solution to problem ci.

Proof. To prove part (i), first recall that the optimality of x* implies

that x*EZ c3. Then, notice that the optimality of ~~*, the differenti-

ability of g at x*. and the convexity of Z imply that the directional

derivative

____ ___________  _________  ~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
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(~~, (x *) ,4 -> 0  for each ~~EZ.

Likewise , the opt itna l i t y of •~~* , the di f fe ren t iabi l i ty of g at x~, and the

observ ation that  :* + s(_ / *) E ’ . for s <  1 imp ly that the  directiona l deri-

va t ive

(-~~.( ~.*) , .. y-*) > 0 .

Consequently,  72 (X*) E ’~ and 0 = (x~, 7~~ (y*)) .

Counter examp les to the converse of part  (i) are numerous and easy to

construct. In fact , the reader is probably already familiar with counter-

examples front the ordinary programming case.

- • To prove part (ii), first recall that the convexity of~~ and the

differentiability of g at x~ imply that

~ (x) - ~ (x~) 
~ (~ 7~;’ (r*) x - x*) for each x EC-.

Then , notice that the assumptions 0 ( x *, ‘7~ r(X*)) and ~~*)E ~~ imply tha t

<c~g (x*) , x.. x*) =<v~~~*),4 �O for •~ach x E Z .

From the preceding displayed relations we see that q (x) _
~~ x?*) > 0  for each

xEZflC.. Consequently, the assumption x*EZflc~ shows tha t x”~ is optimal

for problem ci. q.e.d.

It is worth noting that ~~‘ is differentiable everywhere for most of

the examples given in section 2.1 of (11. Moreover, Z is polyhedral and

hence convex for each of those exampl es, and p is convex for important

special cases of each of those examples. Consequently, the P optimality

conditions frequently characterize the optimal solution set 1* for problem ci.

_
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3. The constrained case. To extend geometric programing by the explicit

inclusion of (generally nonlinear) constraint functions, we introduce two

nonintersecting (possibly empty) positive-integer index sets I and 3 with

finite cardinality oa) and o(J) respectively . In terms of these index

sets I and 3 we also introduce the foll~~ing notation and hypotheses:

(Ia) For each k E [0) ~ 1 U J there is a function with a non-

empt y domain Ck c E  , and there is a non empty set

D ~~E for each j E J .
.1

(2a) For each k E C O 3 U I U J  there is an independent vector variable

in E , and there is an ind ep endent vec tor variable ~ with

components for each I E J.

(3a) x’ denotes the cartesian product of the vector variables x1 ,

iEI , and x~ denotes the cartesian product of the vector

variables x~, JEJ. Hence, the cartesian product (x
0
,x
I
,x
3
)~~x

is an independent vector variable in ~~ where

n n 0+Eni
+En .

I

(4a) There is a nonempty cone X~~E .

The resulting “geometric programing problem” A is then defined in the

following way.

Problem A. Consider the objective function G whose domain

c~~[(x , ’) IX
k
ECk, kE (0)UI, and (x1, 

~j
)ECi

~
, JEJ I

and whose functional value

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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‘- ere

• c~~ [(~
Ll~~

. ) either ~ ~0 and sup (x1,d1) < +~~~~, or
I -~ d1 ED

~~>O and x1 E W
1

C
1

)

and

sup ( x1,d1) if ‘ 0 and sup
d 1 E D  d I E D

g~
’(x1 ,~ 1

)

(• 1
g

1
(x~I~.

1
) if >0 and x~ E K1

C
1
.

Using the feasible solution set

• 
s~~[(x,~ )E C J x E X ,~~n~~gj(x’)�0 , iE11,

calculate both the problem infimuin

c~~ inf G(x,~ )(x ,K) E S

and the optimal solution set

s* [(x , K) E S  G(x ,K) = cp) .

A
Needless to say , the unconstrained case occurs when i J O ,  g0

:C
0

g :C.,

and X=Z. On the other hand, the “ordinary programing” case occurs when 
-•

A
and Ck Co 

for some set C~~~E kE (O)UI,

L ~~~~~~~~~~~~~~ 
_

~~ -
-
~~~~~~~~~~~~~~: • _  

~~~~~~~~~~~~~~~~~~~~~~~ - - _ _ _ _ _ _



-7-

and

V u 1 where there is a total of l+o(I)
U

X coluinn space of

U identity matrices U that are mxm.

In particular , an exp licit elimination of the vector space condition xEX

by the linear transformation

(:~)= 
[~~]

shows that problem A is then equivalent to the very general ordinary pro-

granining problem

Minimize g0
(z) subject to

g~ (z)�0 iEI

z E C .

Our optimality conditions for the preceding problem A utilize the

dual cone

Y (y E En 0 � (x,y) for each x E x),

whose vector variable y has the same cartesian-product structure as the

vector variable x. They are stated as part of the following definition.

DEFINITION: A critical solution (stationary solution , equilibrium

solution , P solution) for problem A is any vector (x*,K*) for which there

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~— -- - - -
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is a vector ~~* in E
(1) 

such that (x*,K*) and )~* jointly satisfy the

following P o~ timali ty conditions:

x~ E X ,

*i i E I ,

> 0  i E I ,

* *i)0  iEI ,

y* E Y,

0 (x *,y *)
and

*1 *j + *j *(x ,y )g
1
(x ,~~ ) jEJ ,

where

*0L ~ *0y =v g
0

(x ) ,

*
y X~~7g~ (x ) iE I ,

and

*~~~~ *j *y =v g
1
(x 1K 1

) iEJ.

Needless to say, if the cone X is actually a vector space, then Y X 1 
and

hence the P optimality condition 0 = (x*,y*) is redundant and can be

deleted . Furthermore, in the ordinary programing case, the vector space

Y [yEE ~~Iy °+Ey
’ O),

I

so the remaining P optima lity conditions are essentially the (mor e familiar)

“Kuhn-Tucker optitnality conditions” 

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •  .44
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iEI ,

iEI ,

X~g1
(z*) 0 iEI ,

and

v g 0 (z *) +Z~ X~~v g~ (z *) 0 .
I

On the other hand , the following important concept from ordinary pro-

• graniining plays a crucial role in the theory to come.

DEFINITION. For a consistent problem A with a finite infimum c~, a

Tucker vector is any vector X* in E (1) 
with the two properties

i E I ,

and

c c =  inf L (x,K;X*),
(x , K ) E C  °

xE X

where the (ordinary) Lagrangian

L ( x ,K;X ) ~ G(x ,K) +E X~g~ (x5.
I

It is important to realize that the preceding definition of Kuhn-Tucker

vectors differs considerably front the widely used definition involving

the Kuhn-Tucker optimality conditions. Even in the ordinary convex program-

ming case the two definitions are not equivalent, though it is well-known

that the preceding definition simply admits a somewhat larger set of vectors

in that case.

The following theorem gives two convexity conditions that guarantee

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ -~~-- — - - -  --- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - -~~~~~~~~
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the necessity and/or sufficiency of the P optima]ity conditions.

*k
Theorem 2. Under the hypotheses that is different iable  at x

kE [0)UIuJ and that 4 is differentiable at (x*j
,K ) ,  j E J ,

(i) given that X is convex, j~ (x~,K*) is an optimal solution to

problem ~ and if X~ is a Kuhn-Tucker vector
_for problem A , then (x*,K*)

is a critical solution for problem A relative to X* (but not conversely),

(ii) given that 5k 
is convex on C

k~ 
kE f O 3 I.JIUJ , if (x*,K*) i~

a critical solution for problem A relative to X*, then (x*,K*) is an

optimal solution to problem A and X* j~ a Kuhn-Tucker vector for problem

A.

Proof. To prove part (i), first recall that the optimality of (x*,K*)

*iimplies that x*EX and that gj(x )� 0, iEI. Then, note that the defining

properties for a Kuhn-Tucker vector X* assert that X~~�0, iEI and that

cp�G (x*,K*)+E X~gj(x*L). Since cp=G(x*,K*), the preceding inequalities
I 

* *icollectively imply that X
1
g~ (x ) = 0, i € I; from which we infer that

L (x*,K*;X*) = inf L (x,K;X*).
° (x ,K)EC °

xE X

Since our hypotheses clearly imply that L0( • ,x;X* ) is differen tiable at

(x*,K*), the preceding equation and the convexity of X imply that the

directional deriva tive

(VL
0

(x*,K*;)~*), x) �O for each x EX.

Likewise , the differentiability of L (  • ,x ;X *) at (x*,K*), the preceding 

--_ - •  _ • - -
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equation, and the observation that x*+ s(_x*) EX for s~~l imply that the

directional derivative

- x*) �O .

- : Consequently , V L ( x *,K*; X *)EY and O= (x*,~7 L ( x *,K*;~ *)>, which means

that y*EY and 0 ( x*,y*). Finally, since our hypothesis that 4 is
differentiable at (x*j,~~), J E J  clearly implies that K*>0, the differenti-

ability of L( ‘ ,x;X*) at (x*,K*) and the preceding displayed equation

imply that

e~*; X*) = 0,

*j *4 + *j *which means that (x ,y ~)=g 1
(x ,K

1
),  J E J .

Counterexamples to the converse of part (i) are numerous and easy to

construct. In fact, the reader is probably already familiar with counter-

examples from the ordinary programing case.

To prove part (ii), first observe that L0( ,x;X*) is convex on C and

that L(’ ,x;X*) is differentiable at (x*,K*). These two observations

together imply that

• L ( x ,K ;X*) _ L0
(x*,K*;>*) �<V (x K )Lo(X*,K* *),(x,K) - (x*,K*))

for each (x ,K)E C.

*1 *j + *J *Since the assumption that (x ,y )g
1

(x ,K
1
), JEJ simply means that

=0, elementary linear algebra shows that

- (x*,K*)) = (V L (x*,K*;X*), x~~x*) for each (x,K).

Since it is clear that v L 0(x*,K*;X*) y*, the assumptions that 0 (x*,y*) 

—_ _- 
- -- -- -_ —__  -~~~~
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and y*Ey imply that

(7x
L
o~~*

,K*)
~*), x~x*) (V

~
L
0

(x*,K*;)*), x) �O for each (x ,K) for which xEX.

From the preceding displayed relations we infer that

L ( x , K ;X *) - L  (x*,K*;)~k) �O for each (x , K) EC for which xEX.

* 

2

Using this inequality and the assumption that X~g~ (x ) 0 , i E I , we see

that

G(x *, K*) �G(x,K)+Zj X~g~ (x i) for each (x K) E C  for which ,CEX.
I

On the other hand, the assumption that X~~�O , iEI guarantees that

G(x ,K) +E X~gj(xi) �G (x,K) for each (x ,K) € C for which g~ (x~) �0, i El.I

From the prec eding two displayed inequalities we infer that

G(x*,K*)~~G(x ,K ) for each (x ,K)ES.

*iConsequently, the assumptions that g~ (x )�0, iEI and that x*EX imply

that (x*,K*) is optimal for problem A, which means of course that cp G(x*,K*).

Using these facts and the assumption that X~gj(x*i).0, iEI , we infer from

the last displayed inequali ty involving L
0 that X* is a Kuhn-Tucker vector

for problem A. q.e.d.

It is worth noting that for most of the examples given or alluded to

in section 2.2 of (1] the kE (O)UIUJ are differentiable everywhere

while either J is empty or the 4, JEJ are differentiable everywhere
except at the origin. ~~reover, X is polyhedral and hence convex for each

of those examples, and the 8k’ kE [O)UIIJ J are convex for important 

- - -
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special cases of each of those examples. Consequently, the P optiinality

conditions frequently characterize the optimal solution set ~* for problem

A.

characterizations of 5* that do not require differentiability of the

5k’ kE [O ]-UIUJ and the 4, JE J , but do require conjugate transform

theory are given in [2].
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